Single-Trial Decoding of Bistable Perception Based on Sparse Nonnegative Tensor Decomposition
نویسندگان
چکیده
The study of the neuronal correlates of the spontaneous alternation in perception elicited by bistable visual stimuli is promising for understanding the mechanism of neural information processing and the neural basis of visual perception and perceptual decision-making. In this paper, we develop a sparse nonnegative tensor factorization-(NTF)-based method to extract features from the local field potential (LFP), collected from the middle temporal (MT) visual cortex in a macaque monkey, for decoding its bistable structure-from-motion (SFM) perception. We apply the feature extraction approach to the multichannel time-frequency representation of the intracortical LFP data. The advantages of the sparse NTF-based feature extraction approach lies in its capability to yield components common across the space, time, and frequency domains yet discriminative across different conditions without prior knowledge of the discriminating frequency bands and temporal windows for a specific subject. We employ the support vector machines (SVMs) classifier based on the features of the NTF components for single-trial decoding the reported perception. Our results suggest that although other bands also have certain discriminability, the gamma band feature carries the most discriminative information for bistable perception, and that imposing the sparseness constraints on the nonnegative tensor factorization improves extraction of this feature.
منابع مشابه
Single-Trial Classification of Bistable Perception by Integrating Empirical Mode Decomposition, Clustering, and Support Vector Machine
We propose an empirical mode decomposition (EMD-) based method to extract features from the multichannel recordings of local field potential (LFP), collected from the middle temporal (MT) visual cortex in a macaque monkey, for decoding its bistable structure-from-motion (SFM) perception. The feature extraction approach consists of three stages. First, we employ EMD to decompose nonstationary si...
متن کاملDecoding a bistable percept with integrated time-frequency representation of single-trial local field potential.
Bistable perception emerges when a stimulus under continuous view is perceived as the alternation of two mutually exclusive states. Such a stimulus provides a unique opportunity for understanding the neural basis of visual perception because it dissociates the perception from the visual input. In this paper we analyze the dynamic activity of local field potential (LFP), simultaneously collected...
متن کاملMultifactor sparse feature extraction using Convolutive Nonnegative Tucker Decomposition
Multilinear algebra of the higher-order tensor has been proposed as a potential mathematical framework for machine learning to investigate the relationships among multiple factors underlying the observations. One popular model Nonnegative Tucker Decomposition (NTD) allows us to explore the interactions of different factors with nonnegative constraints. In order to reduce degeneracy problem of t...
متن کاملRobust Speaker Modeling Based on Constrained Nonnegative Tensor Factorization
Nonnegative tensor factorization is an extension of nonnegative matrix factorization(NMF) to a multilinear case, where nonnegative constraints are imposed on the PARAFAC/Tucker model. In this paper, to identify speaker from a noisy environment, we propose a new method based on PARAFAC model called constrained Nonnegative Tensor Factorization (cNTF). Speech signal is encoded as a general higher ...
متن کاملAlternating proximal gradient method for sparse nonnegative Tucker decomposition
Multi-way data arises inmany applications such as electroencephalography classification, face recognition, text mining and hyperspectral data analysis. Tensor decomposition has been commonly used to find the hidden factors and elicit the intrinsic structures of the multi-way data. This paper considers sparse nonnegative Tucker decomposition (NTD), which is to decompose a given tensor into the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Intelligence and Neuroscience
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008